
Dissolution Rates of Finely Divided Drug Powders 
Effect of a Distribution of Particle Sizes in a 

Diffusion-Controlled Process 

By W. I. HIGUCHIt and E. N. HIESTAND 

An equation is derived to describe the dissolution rate of a particle with time in  a 
diffusion-controlled dissolution process. This  is a plied to a hypothetical powder 
whose particles are approximately log-normally Sstributed. The change i n  size 
distribution with time is shown. Also, the dissolution rate of such a powder is 
compared with that of a monosized powder whose radius equals the mass median 

radius of the powder. 

HE dissolution rate of many finely divided 
Tpowders is diffusion controlled. In addition 
t o  the diffusion rate constant, the effect of the 
size distribution must be included in order t o  
calculate the dissolution rate. This paper 
discusses the use of equations suitable for making 
these calculations. 

THEORY 

The Dissolution of a Single Particle.-Several 
simplifying assumptions enable one to  describe the 
dissolution of a single particle. These assumptions 
are: ( a )  The dissolution rate is diffusion controlled. 
(b)  The diffusion layer thickness is always the same 
for all particles of the same size and is comparable 
to  or greater than the particle radius. ( 6 )  The con- 
centration change of dissolved solid in the bulk solu- 
tion is negligible at all times. ( d )  The effective par- 
ticle shape approximates a sphere. 

From Fick's law of diffusion, 

where m is the weight of a solid particle, D is the 
diffusion rate constant, C is the concentration of 
dissolved solid, t is time, and r is the radius of an 
imaginary sphere through which the diffusion oc- 
curs. 

If a is the radius of the particle at time t ,  then 
r > a. The second assumption, (b), implies a quasi- 
steady state condition in the diffusion layer. Hence, 
the time required to establish this steady state 
condition is neglected (see the Appendix). There- 
fore, one may write 

C, is the saturation concentration and C, is the con- 
centration in the bulkof thesolution. Upon integra- 
tion one obtains 

where AC = C. - C,. 
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I 

Since it has been assumed that AC is independent 
of time, particle size, a, is the only variable with time. 
From the volume of the particle, v, and density, p 

Equating 2 and 3 

da 
dt ap - = -DAC 

Let a = uo at  t = 0, then 

J: a d a  = - - Dtc l' dt 

Equation 4 provides a means of calculating any 
particle diameter at time t if its radius a t  zero time 
is known. 

The Total Dissolution Rate.-Let the particle 
size distribution at zero time be characterized by 
some function of a. 

n = n(a,) (Eq. 5) 

then the total number of particles, N, in any incre- 
ment of sizes is 

N =  lI n(a,)  duo (Eq. 6)  

where ato and aa0 are the largest and smallest par- 
tides at zero time in the increment; and by de- 
fining uro and alo as the extremes of the size distribu- 
tion, N becomes the total number of particles in the 
entire sample. 

The total mass of undissolved drug at 

asoa P t <  - 2DAC 

is 

M =  s.:.'" 4/3wa3n(u,) da, (Eq. 7) 

where a in the integral is given by Eq. 4. 
When 

a 2  P t > -  2DAC 
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The Size Distribution Function.-Equation 5 
states that the size distribution is some function of a.. 
Equation 9 is sufficiently complex that the integra- 
tion becomes difficult if the distribution function is 
not simple. In  practice, many materials have 
particle size distributions that correspond to a rela- 
tively simple function of a,. Such a case will be de- 
scribed in a later publication which gives a test of 
the theory presented here. 

Because many materials when milled produce a 
size distribution that approximates a log-normal dis- 
tribution, it would be useful to  substitute for n(a , )  
the log-normal distribution function. However, 
this becomes a somewhat complex case. 

A log-normal distribution when plotted as n vs. uo 
gives a skewed curve with the long tail toward the 
large diameters. In such a case the mass median 
diameter is much larger than the diameter corre- 
sponding to the mode of the histogram. Conse- 
quently, most of the mass is present in the region 
of the distribution where n is increasing as a, is de- 
creasing. Therefore, distributions approximately 
log-normal may also be approximately character- 
ized over the region accounting for most of the mass 
by some inverse power of the radius. Figure 1 
shows the reasonable correlation of such a case. 
This case corresponds to a distribution according to 
the equation 

the lower limit of integration must be changed to  
correspond to  the zero time radius of the particle 
that has just dissolved at time 1. viz. aot 

2DACt ' r e  
a,t = (7) 

Combining Eqs. 4 and 7, and using the lower 
limit defined in Eq. 8. the amount of undissolved 
drug a t  time 1 is 

so the fraction undissolved, Q, at time 1 is 

. \I" P i '-'-"' -- 

J ~ a,~n(u.) da, 
as0 

where M ,  is the total weight of solid a t  zero time. 

The Cumulative Distribution Curve.-The use of 
the cumulative plot of per cent of sample above a 
given size us. the size is most convenient, especially 
when the particles are approximately log-normally 
distributed as they usually are when produced by 
milling. The fraction larger than a;. is given by 

~ ~ R n p a o a n ( a o )  dao 

M e  (Eq. 11) f > aio = 

The Change in Size Distribution with Time.-It 
is possible to evaluate the size distribution a t  times 
after the dissolution has started. When 

a S 2 p  t <  - 2DAC 

P i '-'-I' 

-" 

P 1 ' I  

U" 

(Eq.-12) 
or when 

uro% 

t' 2DaC 

(Eq. 13) 

Obviously the integrals in Eqs. 12 and 13 are the 
same form as in Eo. 9 and may be evaluated if 

a10 

as0 
where vo = 4/3 u uO3; V,, = Z nvo and K' is a con- 

stant. Hence 

K 
a04 

n = -  

where K is another constant. 
Note that Fig. 1 was plotted on log-probability 

paper; a straight line represents a material that is 
log-normally distributed. A plot of values cal- 
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Fig. 1.-Comparison of the log-normal distribution 
n with a simpler case, n = zc Eq. 9 may be evaluaied. -" 
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culated using Eqs. 1 and 15 fits the log-normal line 
very closely except for the upper and lower 10% 
by volume. The contribution of the larger radius 
10% to the dissolution will be small except at the 
very end of the dissolution process and the particles 
at the small end of the distribution will dissolve very 
rapidly. Consequently, after they have dissolved 
completely, these smallest particles will contribute 
nothing to the solution of Eq. 9. Therefore, devia- 
tions from the log-normal case resulting from the 
use of Eq. 15 are modest, and the general conclu- 
sions from its use may be considered to  also be 
approximately true for the log-normally dis- 
tributed case. 

The Dissolution Rate of Powder when n = 
K/a.'.-Substituting from Eq. 15 into Eq. 10 and 
integrating gives 
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1 X lO-'Gm./ml.; D = 5 X 10-acm2./sec. Note 
that Q vs. log t gives a nearly linear plot over much 
of the dissolution time. 

According to  Eq. 4, ulo will dissolve completely 
when 

where 

ar = daI.2 - 2DACt - 
P 

In  our hypothetical case we do not have an experi- 
mental value for MO so we must use Eq. 7, which 
gives 

Me = 4/3rpK In 2 (Eq. 17) 
aao 

and 

(Eq. 18) 

In a real case it might be better to evaluate K 
to give the best fit to the real size distribution and 
use the experimental value of M. in the equation. 
Of :ourse this leads to some hypothetical values of 
the largest and smallest radii that correspond with 
the selected value of K. These we may designate 
aiK and a a K ,  respectively. It is necessary that aiK 9 
aio and that a 8 K  < ueo where uio and sao now dethe 
the experimental largest and smallest particle in 
the real sample. 
An Illustrative Example.-Figure 2 represents a 

plot of Eq. 18 when the following values are used: 
aiu = lop; aso = 0 . 3 ~ ;  p = 1.3 Gm/ml.; A C  = 
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Fig. 2.-Comparison of the dissolution rate of a 
polydispersed powder with a monodispersed powder. 

and uio will dissolve completely when 

(10 x 10-412 1.3 - - 
2 x 5 x io*x 1 x 10-4 

t =  

1300 see. = 21 min. and 40 sec. 

Also, Fig. 2 shows the dissolution rate of a 
mateiial if the entire material is assumed to have the 
radius of the mass median radius. Obviously, the 
results of a calculation based on a single particle 
size do not produce rates similar to  those that in- 
clude the entire size range. 

Figure 3 shows the change of U I  and aot during the 
dissolution process. 

Figure 4 represents the size distributions at the 
time when approximately half of the solid has dis- 
solved. Obviously, the smallest particles are dis- 
solving most rapidly and the size distribution changes 
accordingly. 
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Fig. 3.--Changes in UI and at with time. 
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Fig. 4.-Illustration of size distribution changes 
during dissolution of powder. 
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Equations 13, 15. and 18 are combined to  obtain 
Eq. 19. 

Joiirml of Pharmaceidtical Sciences 

Equation 2 may be written to  include the time 
dependent term. It becomes 

which was used to calculate this plot. 

DISCUSSION 

In the derivation of Eq. 18, AC was considered 
constant both with time and with particle size. The 
first requires that the liquid phase be large so that 
no significant change in concentration results from 
the dissolved solid. A later communication (1) 
describes a method of handling this problem when 
a correction is needed. 

The particle size effect on solubility cannot be 
easily included since many sizes are present a t  any 
given time. If one assumes the interfacial tension to 
be about 50 ergs/cm.*, then a 0.1 p particle would 
have a solubility approximately 1.1 times that of a 
large particle. Usually this does not become signifi- 
cant except when dissolving in a nearly saturated 
vehicle. Such small particles dissolve so rapidly 
even when the change in A C  is neglected that this 
effect cannot significantly alter the dissolution char- 
acteristics of the powder. 

APPENDIX 

Considerations on the Validity of Equation 2.- 
The use of the steady state equation to  describe this 
case seems to be justified. The arguments used by 
Nielsen (2) for the case of crystal growth may be 
applied here since the growth and dissolution ex- 
pressions are identical except for sign, as becomes 
evident in the following: 

Fick's law of diffusion is 

When solved for the boundary conditions for 
growth i t  gives 

C ( r , f )  = C, [l- erfc K] (Eq. 2a) 
2 d D t  

where 

erfc y = -- e-E'dE A $," 
and when solved for the boundary conditions for 
dissolution it gives 

c(r,t) = C, [: erfc '<] (Eq. 3a) 
2 d D t  

and from Eq. 1 the gradient across the boundary 
sphere at I = a is 

dm - = 4xa2D rg) dt r = a  

Obviously, b c /b  I for the two cases differ only in 
sign. 

where the second term in the parenthesis represents 
the non-steady part, i.c., the time dependent rate. 
If this term becomes much less than the 6rst term 
before any significant material has dissolved then 
the steady state case is a very good approximation. 

An estimate of the time, t ' , required for this term 
to be negligible is obtained when 

which gives 

1' >> 2a (-$)"2 

or 

4a2 
t' >> - TD 

When a = 1 X lO-'cm. and D = 5 X lo-' cm.*/ 
sec. as before, then 

t' >> 2 X sec. 

is the criterion of the time in which very little 
dissolution should occur if the steady state equation 
is to  be sufficient. 

Both Eqs. 4 and 6a involve as, so the time criterion 
changes with the radius in the inverse direction to  
the rate of change of radius by dissolution. Thus, 
the effects are compensating. 

Equation 4a rigorously applies only when a is 
constant. Obviously a is constant only when AC = 
o and in a real case AC # o. Therefore, one must 
determine how large AC may be before the change 
in a is important. 

The steady state diffusion layer will have a 
thickness at least equal to  a.  A significant change in 
a might be set a t  level where the change in a 
is 1% or more of the diffusion layer thickness, i.e.. 
approximately 0.01 a. The change in a necessary 
to  establish the diffusion layer may be estimated by 
estimating the amount of solid required to form the 
diffusion layer. Of course, this varies with the 
magnitude of AC. In  the case considered here, 
values of AC < 1 X lo-* Gm./ml. seem to be suffi- 
cient for the constancy of a to  be a good approxi- 
mation 

a =  
a. = 
ah = 
aso = 
aot = 

a1 = 

alR = 

a s K  = 

for calculating t'. 

DEFINITIONS OF SYMBOLS 

radius of a particle a t  time 1. 
radius of a particle at zero time. 
radius of largest particle at zero time. 
radius of smallest particle a t  zero time. 
zero time radius of largest particle that has 

comoletelv dissolved at time t. 

hypothetical values of the largest particle 

hypothetical values of the smallest particle 
corresponding to the value of K. 

corresponding to the value of K. 
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Q = fraction of undissolved solid at time 1; 

I = radius of imaginary sphere through which 

t = time. 
v 

Mo vo = - 
P 

v,, = volume of a particle of a, radius at zero 
time. 

r = 3.1416. 
p = density. 

MIMo. 

diffusion occurs. 

= volume of a single particle. 
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= any chosen value of a in the range present. 
at, = the zero time radius of at. 
C = concentration. 
C, = saturation concentration. 
C, 
D = diffusion coefficient. 
f>a, = fraction larger than radius, a,,, at zero 

time, 
f>a = fraction larger than radius, a, at time f. 
K = a proportionality constant. 

= concentration of bulk of solution. 

m = mais of a single particle. 
M = total mass of undissolved solid. 
Mo = total mass of solid at zero time. 
n = number of particles of a given size. 
N = total number of particles. 

Hypotensive Activity of Certain Diquaternarized 
Ammonium Compounds as Influenced by 

Administration Route and Anesthesia 
By DAVID W. COATESt, JOSEPH P. BUCKLEY, and WILLIAM J. KINNARD 

A three-way crossover experimental design demonstrated that urethan anesthesia 
enhanced the hypotensive responses of certain diquaternarized ammonium com- 
pounds in normotensive rats. The test showed that cardiovascular responses 
were more significant in hypertensive than in normotensive rats. Barbiturate 
anesthesia potentiated the hypotensive responses of certain of the compounds in 
normotensive dogs. Intravenous infusion of two of the compounds into anes- 
thetized normotensive dogs produced a maximum hypotensive effect in 2 minutes 

with no further lowering of the blood pressure as the infusion was continued. 

HE INCOMPLETE absorption following the 
administration of bisquaternary am- 

monium compounds has long been considered 
one of the main factors contributing to the 
erratic results produced by these ganglionic 
blocking agents in the treatment of arterial 
hypertension, and strong support for this view 
was provided by the absorption studies of 
Levine, et d. (I), and Schanker, et ul. (2). 
Maxwell, et d. (3), reported the relative inetTec- 
tiveness of chlorisondamine in lowering the blood 
pressure of unanesthetized normotensive rats 
and dogs following intravenous administration. 
Haas and Goldblatt (4) obtained slight pressor 
responses in mean femoral arterial blood pressure 
following the intravenous infusion of tetra- 
ethylammonium, hexamethonium, pentolinium, 
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chlorisondamine, and mecamylamine in un- 
anesthetized normotensive dogs. However, 
these same investigators demonstrated a de- 
pressor response with pentolinium during an 
intermediate period of renal hypertension in 
dogs (5). 

This report deals with the attempt to evaluate 
several bisquaternary ammonium compounds 
(Fig. 1) for their oral hypotensive activity in 
unanesthetized normotensive rats and dogs 
and in unanesthetized renal hypertensive rats. 
The experiment was designed to allow compari- 
sons between oral and parenteral administration 
of the compounds to unanesthetized animals 
and between parenteral administration to un- 
anesthetized and anesthetized animals. 

METHOD 

Hypotensive Activity in Normotensive Rats.- 
Normotensive Wistar rats were trained for indirect 
systolic blood pressure determinations using the 
photoelectric tensometer.' These rats were then 
divided into five groups of eight animals each. One 
of the following compounds was assigned to each 
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